
Iterative Majorization based Localization
for Wireless Sensor Networks

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by

Vijayender Reddy K.

(Roll No. Y5827221)

to the

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June, 2010

To Almighty.

Abstract

Location information is an important addition to the sensor data in a Wireless

Sensor Network. This information is used in routing protocols, storage algo-

rithms etc. In-network localization techniques that solve for the coordinates of

its constituent nodes are contemporary topics of research. We have studied local-

ization techniques with primary focus on multidimensional scaling. Multidimen-

sional scaling techniques are less popular in Wireless Sensor Networks, because of

the common notion that they are computationally intensive. Simplex algorithm,

simulated annealing and iterative majorization are the relevant multidimensional

scaling techniques that have been implemented and simulated, in this work, to

ascertain their performance in the context of Wireless Sensor Networks. Based

on our study we chose iterative majorization to implement localization. We have

used certain results of MDS, which simplified the necessary computations. To

bridge the gap between research and on field implementations experiments were

carried out and the obtained data was used to model our simulations. In this

work received signal strength intensity is used to estimate the distance between

nodes. IRIS motes were used in our experiments. We found significant ground-

bounce effect on the path loss of radio signal strength. In this work localization

was implemented and discussed using plain ‘iterative majorization’ and a slightly

modified ‘distributed iterative majorization’.

iv

Acknowledgements

I am very much indebted to my Thesis Supervisor, Dr. Joseph John, for dedicat-

ing his valuable time and advice. I’ve benefited a lot from his constant encourage-

ment and the discussions I had with him. I express my deep sense of gratitude to

him for providing freedom to explore, and patiently rectifying the mistakes that

were committed in the process.

I am thankful to my colleagues, friends and wing-mates for their excellent com-

pany and support during my work. I would like to mention a special thanks to

Ketan Sharma, who had provided company and assisted me in my experiments.

Finally, I express my gratitude to my parents for their support and encourage-

ment.

Vijayender Reddy K.

v

Contents

Abstract iv

List of Figures vi

1 Introduction 1

1.1 Objective of thesis . 2

1.2 Thesis organisation . 3

2 Review of Wireless Sensor Networks 4

2.1 Components of a Wireless Sensor Network 5

2.1.1 Hardware overview . 5

Controller . 6

Memory . 7

Communication device . 7

Sensors . 8

Power supply . 8

2.1.2 Software . 9

TinyOS . 10

2.2 Application of localization for Wireless Sensor Networks 11

2.2.1 Related work . 13

3 Node Localization in Sensor Networks 15

3.1 Basics of localization . 15

3.1.1 Methods of acquiring distances 15

vi

vii

3.1.2 Methods of localization . 16

Multidimensional Scaling (MDS) 17

3.2 Overview of algorithms studied . 19

3.2.1 Simplex algorithm . 19

3.2.2 Simulated annealing . 20

3.2.3 Iterative majorization . 21

3.3 Comparison of different MDS techniques 23

3.3.1 WSN-like distances . 24

3.3.2 Performance analysis of simplex algorithm 26

3.3.3 Performance analysis of simulated annealing 27

3.3.4 Performance analysis of Iterative Majorization 29

3.3.5 Comparison . 30

4 Implementation in motes 32

4.1 Obtaining inter-nodal distances . 32

4.1.1 Experimental setup . 32

4.1.2 RSSI readings . 37

Ground-bounce path loss . 37

Estimating distance from ED 39

4.2 Asynchronous neighbour discovery . 40

4.3 Iterative majorization . 41

4.4 Testing . 42

5 Distributed localization 48

6 Conclusions and suggestions for further work 56

6.1 Suggestions for further work . 57

References 57

List of Figures

2.1 Schematics of star, ring and mesh grid protocols 4

2.2 Overview of mote hardware components 6

2.3 Interconnect of the various components in OscilloscopeAppC 11

3.1 Readings provided by Patwari [1] . 25

3.2 Simulated readings . 25

3.3 Performance analysis of simplex algorithm using wsn-like distances . . 26

3.4 System usage plot for simulated annealing 27

3.5 Performance analysis of simulated annealing 28

3.6 Performance analysis of iterative majorization 29

3.7 Comparison of MDS techniques . 30

3.8 Comparison of speed of convergence of MDS techniques for a test case

of 44 nodes . 31

4.1 Finding ToA without synchronised clocks 33

4.2 ToA vs. distance in open space . 35

4.3 LQI vs. distance in open space . 35

4.4 ED vs. distance in open space . 36

4.5 ED vs. distance over the corridor roof 36

4.6 ED vs. distance in open space for 3 different sets showing the ground

bounce effect . 37

4.7 Illustration of ground-bounce between two motes 38

4.8 Verifying ground-bounce path loss model 38

viii

ix

4.9 Points of distance table for estimation of distance from ED 39

4.10 Errors in estimating distance from ED using distance table 40

4.11 Flow chart of iterative majorization 42

4.12 Results of a few test cases on simulation with IM using wsn-like dis-

tances . 45

4.13 Results of a few test cases on simulation with IM using ideal distances 46

4.14 Loss after each iteration for a test case of 9 motes 47

5.1 Blocks used in Fig. 5.2 . 51

5.2 Flow chart of distributed iterative majorization. Details of blocks

used are provided in Fig. 5.1 . 52

5.3 Results of a few test-cases on simulation with IM using ideal distances 53

5.4 Continued from 5.3 . 54

1 IRIS mote . 65

2 Experimental setup to measure the various metrics for range estimation 65

Chapter 1

Introduction

The past two decades of information revolution has created a growing demand for

automated live information feeds and remote accessibility of all sorts of devices. The

proliferation and easy availability of the embedded electronics and radio transceivers

have resulted in development of relatively cheap, low-power, multifunctional sensor

nodes that are small in size and can communicate over wireless medium. Wireless

Sensor Networks (WSN) are notable for their ease of setup and scalability. In addi-

tion to these, the combined processing power of all the networks has paved way to

research of novel techniques of sensor data acquisition. Instead of sending raw data

to the sink, the sensor nodes now have the capability to carry out simple instructions

and collaboratively process the data. These features have accrued a wide range of

audience and applications for WSNs. Some of the prominent areas of application

are environment, health, military and home.

Apart from easy deployment; self-configuring ability and scalability are impor-

tant factors that shall increase the adoption of WSNs. We are still in the process of

finding a ubiquitous solution for self-configuration of sensor networks. Availability

of relevant location information of the nodes is one particular aspect, that can boost

self-configuration. In many scenarios sensor data has no value without the location

information.

The process of finding location information of sensor nodes is termed as localiza-

1

2

tion. In the recent years, a considerable amount of research has been done for finding

efficient and accurate localization solutions. Unfortunately most of the research has

been either analytical study or limited to simulations. Methods suggested suffered

from either intensive memory/processing requirements, accuracy, partial implemen-

tations or complexity. One could receive the location information from GPS devices,

or other external means. In fact the accuracy of these methods is better than the

in-network localization. But, as one of the primary motives of Wireless Sensor Net-

works is to provide cheap ubiquitous solutions, that can be easily adapted. Hence

in-network localization is widely researched.

Localization is useful for:

• Routing protocols: Protocols can exploit the location information and provide

robustness and reduce latency.

• Query systems: Most of the environmental properties have a predictable gra-

dient. Availability of location information can be exploited along with this

property to provide faster and low power consuming (in-network) query pro-

cessing systems.

• Compression of data: Location information can provide assistance to com-

pression algorithms of data aggregation, which conserve energy by reducing

communication link usage.

• Tracking and logistics: Though the accuracy of in-network localization tech-

niques is low, they still are an option for cheap and simple solution for tracking

and logistics.

1.1 Objective of thesis

Many techniques have been provided for localization in WSNs. They can be broadly

classified to lateration based and multidimensional scaling (MDS) techniques. Lat-

eration techniques were the initial research in this field. They were known to suffer

3

from lack of adaptability to errors and complexity in implementation. Though MDS

was a well established field, it has been less researched as it was considered to be

computationally intensive.

The objective of this thesis is to compare relevant MDS techniques in the context

of localization for WSNs. Based on the study of MDS techniques, a solution for

localization in WSNs is to be implemented for a Wireless Sensor Network.

1.2 Thesis organisation

Chapter 2 provides a review of the Wireless Sensor Networks. Related hardware

and software are discussed. Applications of localization and related work in

this field are discussed.

Chapter 3 introduces the basics of localization for WSNs. Relevant MDS tech-

niques are introduced, and are compared. Through the studies in this chapter

it is found that iterative majorization outperforms the other studied tech-

niques.

Chapter 4 provides details of work done for range estimation and implementation

of iterative majorization for a Wireless Sensor Network.

Chapter 5 further simplifies the iterative majorization method and provides a dis-

tributed algorithm for localization. Details of performance of the distributed

algorithm are discussed therein.

Chapter 6 concludes the thesis and gives suggestions for future work in this area.

Chapter 2

Review of Wireless Sensor Networks

Wireless Sensor Networks consist of spatially distributed autonomous sensor nodes,

that collaboratively perform tasks like monitoring physical and environmental condi-

tions. Each of these sensor nodes is referred as a “mote”, and is capable of performing

some processing. Typically these devices are battery driven, and are used for unat-

tended monitoring for a duration that might range from a few months to a couple

of years.

Motes are cost efficient economical devices which can be used in large numbers.

The power of Wireless Sensor Networks is in the ability to deploy large number of

tiny nodes, that work cooperatively. In the scenarios involving deploying devices in

large numbers, self configuring ability is important. These networks are expected to

work without manual management or configuration. In many scenarios the protocols

are designed to facilitate scattering the motes randomly in an ad hoc manner[2, 3].

Figure 2.1: Schematics of star, ring and mesh grid protocols

4

5

Unlike traditional wireless devices, motes do not communicate to a central high

power node. Typically communication is only among the peers. Through these

peer-to-peer communications they form a mesh network, where information can

be passed between far away nodes through multiple hops. There are a plethora

of routing protocols for communicating between the nodes. They vary from the

traditional star, ring to mesh grid protocols (See Fig. 2.1). The protocols of ad hoc

networks use one of the following topologies: flat network topology [4], hierarchical

network topology [5] and hierarchical cluster topologies [6, 7, 2].

Mobile Ad Hoc Networks (MANETS) are close relatives of WSNs as they deal

with similar network structure. MANETs as such are used in situations where the

nodes/terminals are much more powerful, such as PDA, laptops etc. WSNs have

to scale to much larger numbers (perhaps hundreds or thousands) of entities than

current ad hoc networks for MANETs. One particular problem that WSNs share

with MANETs is self reorganisation of networks without much human intervention.

Some of the concepts regarding self reorganising networks are discussed in [8]. Ad

Hoc On-Demand Distance Vector (AODV) routing protocol is a popular protocol

used by mobile nodes in ad hoc networks [9].

There is extensive research in the development of new algorithms for data aggre-

gation [10], ad-hoc routing [11, 9], and distributed signal processing in the context

of Wireless Sensor Networks.

2.1 Components of a Wireless Sensor Network

2.1.1 Hardware overview

This section discusses the hardware components and the composition of a single

node of a Wireless Sensor Network, a ‘mote’. A functional diagram of a mote is

provided in the Fig. 2.2. Components used in a mote are typically cost of the shelf

equipments to facilitate low price availability of the technology. Motes have to meet

the requirements that come from the specific applications they are deployed for,

6

for e.g., they might have to be cheap, have small form factor, adequate memory

resources, energy requirements, appropriate sensors on-board etc.

ControllerCommunication device Sensors

Memory

Power Supply

Figure 2.2: Overview of mote hardware components

Controller

The controller is the core of a mote. It collects data from the sensors, processes the

data, decides when and where to send it, and receives data from the other nodes. It

might have to do time critical signal processing. A significant part of the network

protocol and routing information are done by the controller.

Keeping in mind the cost and ease of construction, microcontrollers, which are

widely used in embedded systems are the common choice for Controllers. A few

popular microcontrollers are listed below:

Intel StrongARM is in WSN terms a fairly high-end processor and mostly used

when intensive computation is required as in signal processing scenarios.

Texas MSP 430 (16bit RISC) is a class of nodes specifically designed for embed-

ded applications provided by Texas Instruments.

ATmega 128L (8-bit) is another popular choice of microcontrollers for WSNs pro-

vided by Atmel. The Crossbow Technology Inc. provides a range of motes

derived from MICA series (MICA2, MICAZ, IRIS etc.) which use ATmega

128L microcontroller. MICA is a platformWireless Sensor Networks developed

by University of California, Berkley.

7

Memory

RAM for program execution and ROM (more exactly EEPROM), for storage of

program code are typically provided by the microcontrollers. However external

serial flash devices, e.g., AT25Dxxx, are used to retain data over power losses. The

energy consumed for a single write to flash device is significant hence they are used

efficiently and primarily for data logging purposes. Also the long read and write

delays of flash devices prevent them from being used as a secondary RAM device.

Communication device

Communication device is used to exchange data between individual nodes. Wireless

communication consumes more energy than wired communication, for similar dis-

tances. Hence, often, the buses on the microcontroller are multiplexed for a number

of nearby sensors whenever feasible.

For a practical RF-based system, the carrier frequency has to be carefully chosen.

Except for Ultrawideband technologies most of today’s RF-based systems work at

frequencies below 6 GHz[12]. Keeping in mind the low cost of the sensor nodes,

these devices have to operate in ISM bands which require no licensing. Thus the

popular choice of frequency band for WSNs is the band specified by IEEE 802.15.4.

[13]. IEEE 802.15.4 operates on one of three possible unlicensed frequency bands:

• 868.0-868.6 MHz: Europe, allows one communication channel.

• 902-928 MHz: North America, up to thirty.

• 2400-2483.5 MHz: worldwide use, up to sixteen channels.

Transceiver is the device that performs the radio communication in a mote. A

few of the popular IEEE 802.15.4 compliant transceivers that are available in the

market are CC1000, CC2420, RF230.

The tasks and characteristics of a transceiver are [12]:

8

• Service to upper layers (most notably to the Medium Access Control layer):

The service either packet oriented or byte level interface as requested by the

controller. It also provides an interface for configuring the PHY parameters.

• Power consumption and energy efficiency: The communication unit must pro-

vide idle (Listening for packets) and sleep (Low power with significant parts

turned off) power states, which can be utilised to conserve energy.

• Modulation: Modulation of the data which is further put into the medium by

means of an antenna.

• Gain control and channel selection: Interface to vary the signal strength of

outbound messages and to select one of the available channels for both inbound

and outbound messages are provided.

• Carrier sense and RSSI measurements.

• Some of the chips also provide CRC checking for the received packets.

Sensors

A few sensors commonly used in Wireless Sensor Networks for environmental sensing

or humidity, temperature, ambient light etc. The above examples fall under the

category of passive omnidirectional sensors. Typically sensors are interfaced to the

controller using the ADCs of microcontroller. Some sensors that have advanced

configuration controls are connected to the microcontroller through bus protocols

like SPI, USART or I2C.

Power supply

Traditional batteries are used for the power supply in most of the commercial motes.

The life of a pair of AAA batteries (of 1000mAh each) in a mote ranges from 6

months to a few years, based on the frequency of usage. Sending data over the

wireless medium requires a considerable amount of energy compared to the idle

9

state energy consumption, hence judicious use of the communication link must be

made. Compression and decompression might require lower amount of energy than

the amount required to transfer the uncompressed stream of data. Methods avoiding

use of battery are discussed in [14], which derive energy from e.g., solar cells. These

techniques can make the sensors near perpetual devices. As per their estimation

these devices could run unattended for about 45 years.

2.1.2 Software

Each mote runs an instance of an Operating System (OS) specially designed for the

task it is deployed. The traditional tasks of an OS are controlling and protecting

the access to resources and manging their allocation to different users as well as the

support for concurrent execution of several processes and communication between

these processes[15]. Only some of these tasks are implemented in an OS for sensor

nodes.

Support for concurrent execution is crucial for motes, which have to perform

time certain critical duties. Most of the programs in a traditional OS are designed

to work sequentially, and the processes are switched from time to time. But the mi-

crocontrollers used for sensor nodes, do not have the required resources to support

a full-blown operating system, or an efficient process scheduling and context switch-

ing mechanism. Moreover, in sequential logic, the system will have to frequently

switch to processing of incoming packets. In the absence of concurrent execution, a

traditional sequential model would run into the risk of missing data while a packet

is processed or missing a packet when sensor information is processed, especially if

either of the operations are time consuming.

The two techniques that address concurrency are process-based concurrency and

event-based programming. In an event-driven system the main program logic is

divided into small tasks and events. It must be noted that similar to this event-

driven logic, the WSNs operate on a reactive basis. Changes in environment create

events, and events create other events.

10

TinyOS

TinyOS is a free and open source component-based operating system and a platform

targeting Wireless Sensor Networks. In the current work, TinyOS-2 has been used.

It has been chosen as it is most actively researched and developed in the academia,

among the operating systems for WSNs. Its main advantages are its speed and its

specific structure that serves the purpose of the sensor networks. Same piece of code

can be deployed onto various hardware, in fact on different microcontrollers, with

little or no modifications. TinyOS is built ensuring that extending support to new

systems and architectures will be an easy task. By virtue of this key feature most

hardware of Wireless Sensor Network is supported in TinyOS.

The operating system TinyOS[16] along with the programming language nesC(network

embedded system C) [17] address the challenges of implementing an event-driven

low latency operating system for sensor networks. The event-driven model might be

alien to most programmers and requires getting used to, which might consume time.

But it does provides considerable advantages [18]. It was observed that on a same

hardware, using TinyOS, performance improved by a factor of 8, instruction/data

memory by 2 and 30, respectively, and power consumption was reduced by a factor

of 12, when compared to its general purpose counterpart eCOS[19].

TinyOS supports modularity and even-based programming by the concept of

interfaces, modules and components. The code related to each piece of hardware, and

each functionality are divided into components. Components communicate by way

of commands and events. For example to get the temperature from a temperature

sensor, following are the steps:

• The main program logic component calls a command temperature.read()

• The component temperature issues the necessary commands to speak with

the sensor hardware.

• Until the hardware responds, the main program can perform other events and

tasks such as receiving available packets.

11

• When the hardware responds an event temperature.readDone(error_t

result, val_t val) defined in the component of main program, is called.

Such an approach is termed as split-phase programming

Figure 2.3: Interconnect of the various components in OscilloscopeAppC

Fig. 2.3 shows the interconnect of the various components in a sample applica-

tion. Only the higher level components are shown. Each driver that talks with the

hardware is further divided into components belonging to three tiers of abstraction

[20].

Commands and events are used for triggering duties. In particular commands

must not block or wait for an indeterminate amount of time. The actual computa-

tional work is done in tasks. Let us consider, a computation involves a large number

of iterations, which might require considerable amount of time to run to a conclu-

sion. These iterations are done using tasks. Typically not more than few iterations

are to be accomplished in a single task. It is a good practise to schedule the task

again and again until the iteration runs into a conclusion, rather than waiting for

all the iterations to yield in a single task. This allows for running other time critical

duties in between tasks, that have been triggered by events in the meanwhile.

2.2 Application of localization for Wireless Sensor

Networks

Wireless Sensor Networks can enable information gathering, information processing

and monitoring of environments for a variety of applications. There are different

kinds of applications in which sensor networks perform a wide range of activities.

12

Of them certain applications require that sensor networks collectively form an ad

hoc distributed processing network. In these applications the networks must self-

configure and self-organise. Such unattended sensor networks are becoming increas-

ingly popular in a large number of applications [21, 22, 23, 24].

Many signal processing tasks in a sensor networks assume the availability of

location information (For e.g. see [24]). Location information ascertains the space

time relation of the sensor data, which can be further used in meaningful aggregation

of data. One could develop querying systems similar to TinyDB[25] (used for query

processing in a network built with TinyOS) and query based on both spatial and

temporal information of the monitored environment.

In most situations, sensor information is useful only along with spatial informa-

tion. Accurate information of sensor location is often not available. Sensor nodes are

either carefully placed by hand or scattered. In the former case location information

can be assumed or obtained easily, since the nodes are static. Often in the former

case, nodes are used in small numbers. But in the later case, which is often the

case when people need large number of sensors, manually locating each sensor node

is tedious and impossible in many situations (e.g., airborne scattering). One could

employ each sensor node with a GPS to obtain location but this adds to the expense,

power consumption and form factor, let alone the fact that GPS devices might fail

under a roof(e.g., cellar, tunnel etc.). Both these techniques viz., manual setting of

location information and GPS location setting are not applicable to localization of

large scale Wireless Sensor Networks. Thus there is a growing interest in developing

reliable self-localization techniques for sensor networks.

Self-localization in Wireless Sensor Network is an active area of current research.

Location information is used to find spatial origin of the sensor readings which is

used in tracking [26, 27]. This information is also used in routing protocols based on

geographical distribution [28, 29]. Location information is also used in techniques

of storage of sensor data [30, 31].

13

2.2.1 Related work

Many localization algorithms have been proposed to provide location information

in Wireless Sensor Networks. These techniques can be broadly classified into two

kinds[32]: range-free schemes and range-based schemes. Range-free schemes do

not require any assisting technology or equipment to measure the distance between

nodes, they just apply the communication among nodes to localise unknown nodes.

The representative schemes are centroid [33], Approximate Point in Triangle(APIT)

[34] and DV-Hop [35]. But they provide only coarse locations. In our work, we

describe range estimation techniques and range-based localization schemes. A few

of the range-free localization techniques can be considered a subset of range-based

techniques. In these techniques distance between each pair of connectible nodes

is set to a predefined value, and this data is further processed to derive location

information[36]. Range free localization schemes often presume a certain degree of

sparsity of the network.

Range based techniques process the distance information, among the nodes, to

provide us with possible coordinates of the nodes. There are a variety of techniques

for obtaining the distance information. Common techniques for distance or angle

estimation include Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle

of Arrival (AoA), and Received Signal Strength indicator (RSSI)[37]. Each of these

are metrics, available when two nodes communicate, from which one can estimate the

distance in between. These techniques have their own caveats and advantages. Some

provide accuracy, while some have longer range, and some have special hardware

requirements.

Range based techniques can be again broadly classified to beacon based and

beacon-less techniques. In the beacon based techniques, a few nodes are powerful

enough to send strong beacons. Techniques that employ beacons have been doc-

umented in [33, 38]. In beacon-less techniques, nodes estimate their inter-nodal

distance by discovering their neighbours and interacting with them.

Processing the inter-nodal distance to coordinates is done by a variety of tech-

14

niques. Initial research in localization for Wireless Sensor Networks involved using

multilateration [32, 39, 33, 40], triangulation[41]. The other set of popular localiza-

tion techniques fall under Multidimensional Scaling (MDS). MDS is a set of tech-

niques which have developed long before the advent WSNs. Their primary goal

was to provide visual maps of data based on the similarity, dissimilarity or distance

information among the points. There haven’t been any notable implementations or

on-field trials in localization using MDS techniques. Some of the important research

using MDS in WSNs’ are [36, 42, 43]. MDS is a name given to a large group of

techniques. Most of the techniques either suffer from requirement of centralised

computation or intensive computation requirements. Hence most of the research of

MDS in WSNs have remained as simulation works far from implementation. Dis-

tributed weighted-multidimensional scaling (dwMDS)[42] is the most impressive and

complete technique among the MDS techniques and elegant enough to work for a

real network.

Chapter 3

Node Localization in Sensor

Networks

3.1 Basics of localization

Localization is the process of finding the location information of nodes of a sensor

network. This location information can be found using services like GPS, or using

self-localization techniques. Self-localization techniques solve for the location of the

coordinates using information available within the sensor network. An important

set of self-localization techniques translate the set of distances between the nodes,

to coordinates.

3.1.1 Methods of acquiring distances

The inter-nodal distances can be obtained from signal strength, time of arrival, time

difference of arrival etc. The following are the link level metrics available which can

be used to estimate the distance between two nodes.

Received Signal Strength Indicator (RSSI): RSSI is a measurement of the

power present in a received radio signal. In the Wireless Sensor Networks

most of the transceivers compute this metric while receiving messages and is

stored in a register. This metric can be read by the software in mote, when

15

16

required.

Time-of-Arrival (ToA): ToA is the travel time of a radio signal from a single

transmitter to a remote receiver.

Time difference of Arrival (TDoA): TDoA is the difference of arrival time of

signal transmitted from multiple synchronised transmitters.

Among the above methods, time based ToA and TDoA provide most accurate

estimates of the distances between the nodes. But these methods require a high

frequency clock and precision measurements, if they intend to use times from prop-

agation of EM waves. The other alternative is using ultrasonic sounders and corre-

sponding receivers. These provide better accuracy with low resolution clocks, but

require additional hardware and are prone to suffer due to environmental noise. Also

these devices have much lesser range than an EM wave.

Apart from the distance based methods, there is triangulation which uses angle-

of-arrival (AoA) from the direction of propagation of radio signals to find the co-

ordinates. It has the drawback of requiring more than one receivers at a single

node to find the angle of arrival. Thus this method is not in usage. RSSI metric

is readily available in almost all hardware of Wireless Sensor Networks. Hence, in

spite of their poor accuracy, compared to time based metrics, they are widely used

for range estimation. Thus RSSI is ubiquitous for localization in low cost sensor

network solutions.

3.1.2 Methods of localization

Number of methods are available for translating the inter-nodal distances to co-

ordinates. The popular traditional methods are triangulation, tri-lateration and

multilateration which solve for the coordinates by finding intersections and solving

appropriate equations [32]. The performance of these algorithms is deteriorated by

range estimation errors and inaccurate distance measures, which are common in a

wireless sensor networks. Attempts were made to improve the approach by itera-

17

tively computing. However the method added large number of communication costs,

and still could not generate good position estimation in some cases [44].

Multidimensional Scaling (MDS)

MDS is a set of statistical techniques often used in information visualisation for

exploring similarities or dissimilarities in data. It has its origin in psychometrics.

It was initially proposed to help understand people’s judgements of the similarity

of members of a set of objects. As of now MDS is used in diverse fields such as

sociology, physics, political science [45].

Techniques of MDS provide a visual map of a set of objects, on providing the

similarity,dissimilarity or the distances between the objects. Classical MDS was ini-

tially introduced by Torgerson [46]. He provided mathematical calculation which

translated a set of distances between objects to their coordinates in n-dimensions.

Classical MDS requires one of the following extensive computational procedures:

Singular Value Decomposition or Eigen Decomposition. This led to development

of computationally simpler and efficient algorithms like Newton-Raphson, majoriza-

tion, simulated annealing, which work on the principle of finding the solution that

minimises a given loss function [47].

Given a set of n points which are to be localised, the following are a few notations

1. Matrix of pair-wise distances among the n points

∆ =

0 δ2
12 . . . δ2

1n

δ2
21 0 . . . δ2

2n

...
...

δ2
n1 δ2

n2 . . . 0

where δij is the distance between ith and jth points.

18

2. n× 2 matrix of estimated coordinates of the n points.

X =

x11 x12

x21 x22

...
...

xn1 xn2

3. Matrix of pair-wise distances among the n estimated coordinates

D =

0 d2
12 . . . d2

1n

d2
21 0 . . . d2

2n

...
...

d2
n1 d2

n2 . . . 0

where dij is the distance between the coordinates of ith and jth points.

Loss function: Loss function (also referred as stress function) expresses the quality

of approximation of a given configuration ~X.

For a given configuration ~X the approximation error in representing nodes i

and j is given by eij
def
=
∣∣∣dij(~X)− δij

∣∣∣.
The most basic form of stress is Raw Stress. It is given by:

σr(~X)
def
=
∑
i<j

e2ij =
∑
i<j

(
dij(~X)− δij

)2

(3.1)

Normalised stress: For the same accuracy, raw stress varies with number of nodes.

The following is the equation of normalised stress, which has no units, and can

be used to compare the accuracy of different solutions with different number

of nodes.

σn(~X)
def
=
∑
i<j

e2ij =

∑
i<j

(
dij(~X)− δij

)2∑
i<j δ

2
ij

(3.2)

Loss function based techniques require minimisation algorithms. Configuration

19

~X that provides the minimum loss is the optimal configuration. These techniques

start by assuming an initial value of X, and iteratively process on it, until an

optimum minimum loss close to 0 is obtained.

3.2 Overview of algorithms studied

Of the available minimisation techniques for minimising the loss function, we shall

study Simplex algorithm [48], simulated annealing [48] and iterative majorization

[50].

3.2.1 Simplex algorithm

Most of the minimisation algorithms require the computation of derivatives. Nelder

and Mead [51] developed downhill simplex algorithm for minimisation, which can

be used to minimise a function without the evaluation of derivatives. It is used in

scenarios where computation of derivatives might be computationally intensive or

resource inefficient, for example the loss function.

A simplex is the geometrical figure consisting, in N dimensions, of N +1 points

(or vertexes) and all their interconnecting line segments, polygonal faces, etc. In

two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron.

A huge simplex is defined. In each iteration of the algorithm, the function to be

minimised is evaluated at each vertex of the simplex. The downhill simplex method

now takes a series of steps, most steps just moving the point of the simplex where

the function is largest (“highest point”) through the opposite face of the simplex

to a lower point. These steps are called reflections. Based on certain other such

heuristics on the values of function at the vertexes, the simplex is shifted, shrunk,

stretched or expanded. At the end of the iterations the minimum is contained in

the simplex. The details of the algorithm can be found in [48].

20

3.2.2 Simulated annealing

Simulated annealing (SA) is a generic probabilistic meta-heuristic for the global

optimisation problem, for finding a good approximation to the global minimum of

a given function in a large search space.

The name and inspiration come from annealing in metallurgy, a technique in-

volving heating and controlled cooling of a material to increase the size of its crystals

and reduce their defects. The heat causes the atoms to become unstuck from their

initial positions (a local minimum of the internal energy) and wander randomly

through states of higher energy; the slow cooling gives them more chances of finding

configurations with lower internal energy than the initial one.

In this method, each point of the search space is analogous to a state of some

physical system, and the function f to be minimised is analogous to the internal

energy of the system in that state. The goal is to bring the system, from an arbitrary

initial state, to a state with the minimum possible energy.

Procedure for minimising a function f : This method iteratively solves for the

minimum.

• Start with a high temperature and decrease the temperature.

• At each value of temperature certain number of iterations of the following

is carried out

1. A random step X1 = X + ∆X is made, where ∆X is a random step

with size taken proportional to temperature.

2. find f(X1)

3. if f(X1) < f(X) : Accept the new configuration X1.

4. if f(X1) > f(X) : Accept the new configuration by compar-

ing p(δE) = exp
(
− δE
kT

)
with a uniform random variable, where

δE = f(X1)− f(X) .

Initially the function f takes big steps proportional to the temperature (step 1),

21

searching for a minimum. It accepts configurations, if they are of lower energy than

current state (step 3). The method allows for a few upwards climbs of function f(X)

(step 4), to avoid local minimums if any.

3.2.3 Iterative majorization

Iterative majorization is an elegant algorithm for computing an MDS solution. Un-

like the previous methods which are generic minimisation (which can be used on any

particular function without much modification), a given majorization technique can

be used only to minimise the function for which it has been designed. Rather ran-

domly searching for the minimum, this methods exploits the analytical properties

of the function to be minimised.

The central idea of majorization method is to replace iteratively the original

complicated function f(x) by an auxiliary function g(x, z), where z is some fixed

value. The function g has to meet the following set of requirements for it to be

accepted as a majorizing function.

• g(x, z) should be simpler to minimise compared to f(x).

• f(x) ≤ g(x, z)

• f(z) = g(z, z)

On finding such a majorizing function, g(x), for a given f(x), the following

iterative procedure will result in a minimum of the function f(x):

• Let x(i) be the known minimum of function in ith iteration.

• x(i) is considered as the new fixed point z, and

• x(i+1) = minimum (g(x, z)) is computed. It must be observed that x(i+1) sat-

isfies f(x(i+1)) ≤ f(x(i)).

One of the main features of IM is that it generates a monotonically non-increasing

sequence of function values. Thus each iteration guarantees a better estimation of

the minimum.

22

The loss function given by raw stress (equation 3.2) can also be rearranged to

σr(~(X)) = η2
δ + η2(~X)− 2ρ(~(X)) (3.3)

where η2
δ =

∑
i<j δ

2
ij, η2(~X) =

∑
i<j d

2
ij(~X) and ρ(~X) =

∑
i<j δijdij(

~X).

The majorizing function for the loss function given by equation 3.4, is

τ(X,Z) = η2
δ + trace(X ′V Z)− 2× trace(X ′B(Z)Z) (3.4)

which has the minimum

Xu = V +B(Z)Z (3.5)

where V + is the Moore-Penrose pseudoinverse [52] of V . Pseudoinverse is the gen-

eralisation of inverse of a matrix.

B(Z) is given by n× n matrix [bij]:

bij =

 −
δij

dij(Z)
for i 6= j and dij(Z) 6= 0

0 for i 6= j and dij(Z) = 0

bii = −
n∑

j=1,j 6=i

bij

The above method requires computation of Moore-Penrose inverse, which re-

quires considerable amount of computation. Substituting all the weights by 1 sim-

plifies Xu and leaves us with the simple equation

Xu = n−1B(Z)Z (3.6)

Hence to localise a matrix of distances ∆n×n and provide a map X the following

are the steps

1. Initialise Xn×2 with random values

23

2. Update X with Xu where

Xu = n−1B(X)X (3.7)

3. Calculate the normal stress σn (equation 3.1). If σn > threshold jump to step

2, else we have arrived at a minimum.

The above proofs of majorizing function and its minimum, are available in [50].

3.3 Comparison of different MDS techniques

To study the performance of the above said MDS techniques and to find the tech-

nique that provides the best and fast results, a test framework has been made in

C language. Simplex algorithm and simulated annealing had certain configuration

variables, viz. max-step size, temperature etc., that can be varied. This simulation

has been carried out to understand the effect of these variables on the performance

of the techniques, and to find the set of variables that provide best performance

results. GNU Scientific Library (GSL)[53] was used for implementing the minimi-

sation techniques. C has been chosen, as porting the algorithms to nesC (to run on

hardware) from C is an easy task.

The running time of each technique are logged for test cases of varying number

of nodes and also for different parameters of each technique studied. To find out

the exact timing information getrusage() available in <sys/resource.h> has been

used which provides the most accurate estimate of system usage by a given process,

excluding the time spent on all other processes, that might have run in parallel in

the computer. The usage statistics found by using getrusage() do not have any

absolute significance. For the same amount of usage they may vary on different ma-

chines. However these metrics can be compared if all the simulation runs have been

carried out on the same computer. Considering this precaution, all the simulations

have been carried out on a single computer. System usage is directly proportional

24

to the time consumed by the technique for a given test case.

Each test case of the simulation is as follows:

• Generate a random map.

• Find the pair-wise distance between all pairs of nodes.

• Compute wsn-like distances (explained in the next section) based on the pair-

wise distances.

• Input these wsn-like pair-wise distances, along with the configuration variables

to the test-suite.

• The test-suite runs the MDS technique and provides us with the following

output which are recorded:

1. System usage

2. Final loss to which the algorithm converged. If the final loss is less than

0.1, we can safely assume that the technique has converged to a solution.

It must be noted that, in the simulations carried out, all nodes were considered

connectible. i.e., distance between every pair of nodes is available.

3.3.1 WSN-like distances

In order for the simulation to present us with the performance of the various tech-

niques in real scenarios, the input distances to the MDS techniques should closely

model the distances inferred from signal strength between motes in a real setting.

We shall call distance inferred by two motes based up on the signal strength between

them as wsn-like distance. Patwari [54] provided a model for the signal strength

path loss. According to [54], the signal strength Pd(dBm) of a received signal at a

distance of d from mote is given by

Pd(dBm) ∼ N (P̄ (dBm), σ2)

P̄d(dBm) = P0(dBm)− 10np log10(d/d0)
(3.8)

25

where N is normal distribution, σ and np are to be determined by conducting

experiments. P0 is the signal strength at a known distance of d0. Typically np is 2

in free space. Patwari has carried out experiments and obtained RSSI for various

distances. The results of these experimental data have been provide at [1]. We have

used this data to find wsn-like distances discussed above.

-75
-70
-65
-60
-55
-50
-45
-40
-35
-30

0 2 4 6 8 10 12 14 16 18 20

P
d
B

Distance in m

Experimental Pd

Ideal P̄d

Figure 3.1: Readings provided by Pat-
wari [1]

-75
-70
-65
-60
-55
-50
-45
-40
-35
-30

0 2 4 6 8 10 12 14 16 18 20
P
d
B

Distance in m

Simulated Pd

Ideal P̄d

Figure 3.2: Simulated readings

Distance d (inferred using signal strength) between two motes δ distance apart

can be derived from equation 3.8. d is given by

d = δ ∗ 10
N (0,σ)
np (3.9)

By fitting the data with equation 3.9, we found that data provided in [1] has σ ' 4

and np ' 2.11. We used these values for the simulations.

d from equation 3.9 is the wsn-like distance between two motes δ apart. Using

this we generated WSN-like distances between nodes and compared with the exper-

imental data. Fig. 3.1, shows us experimental signal strengths. Fig. 3.2 shows us

the signal strengths generated using wsn-like distances. These are the distances that

have been used to compare the MDS techniques studied in our work.

26

3.3.2 Performance analysis of simplex algorithm

Simplex algorithm has been discussed in section 3.2.1. This technique has been

assessed by running the simulation for a number of test cases with different configu-

ration variables. The following are the configuration variables of simplex algorithm:

• Maximum step size, per iteration

• Number of nodes.

0 10 20 30 40 50 60 70 80 90 1000
10

20
30

40
50

60
70

80
90

100

0

2e+ 06

4e+ 06

6e+ 06

8e+ 06

1e+ 07

1.2e+ 07

1.4e+ 07

1.6e+ 07

Sy
st
em

us
ag

e
→

Converged points

Max step size (m)

No. of nodes

Figure 3.3: Performance analysis of simplex algorithm using wsn-like distances

The results of the simulation are shown in Fig. 3.3. It must be noted that,

in the figure, each point corresponds to a simulation run, with the size of point

proportional to the final loss attained at the end of all iterations.

From the simulation results we can infer that the technique performs poorly for

number of nodes greater than 40. Also, any of the max-step size above or equal to

27

10 can be used. Not much performance variation is found on changing the max-step

size.

3.3.3 Performance analysis of simulated annealing

Implementation details of simulated annealing have been provided in section 3.2.2.

The configuration variables of this technique are:

• number of nodes

• max-step size

• damping constant

• minimum temperature

10 20 30 40 50 60 70 80 90 3
13

23
33

43
53

63
73

83
93

0

200000

400000

600000

800000

1e+ 06

1.2e+ 06

1.4e+ 06

Plot of best cases

Sy
st
em

us
ag
e
→

Iterations per temperature

No. of nodes

Figure 3.4: System usage plot for simulated annealing

Fig. 3.4 and Fig. 3.5 show only the best converged solutions, which shall be

used to understand the configuration variables that provide better results. The

corresponding configuration variables where step-sizes are marked on the points in

28

3

8

13

18

23

28

33

38

43

48

53

58

63

68

73

78

83

88

93

98

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98

N
o.

of
no

de
s

Iterations per temperature

Step size marked on point

Damping constant 2
Damping constant 1.5
Damping constant 1.3
Damping constant 1.1
Damping constant 1.05

1.01.01.0 1.01.01.01.0 1.01.01.0
13.0 9.0 5.017.0 5.0 13.017.0 13.05.0 17.0
17.05.0 13.09.013.0 5.0 13.013.017.0 5.0

13.0 13.0 13.013.0 13.017.0 5.0 13.09.0 9.0
5.0 9.05.0 5.0 5.05.05.0 17.0 17.05.0

5.09.0 9.0 5.05.0 5.0 5.05.09.0 5.0
9.09.0 9.013.09.0 9.01.013.0 9.0 5.0

9.09.0 1.013.09.017.0 1.0 9.05.09.0
5.05.05.05.05.0 5.05.05.0 5.05.0

9.05.09.0 5.013.05.0 5.05.0 5.0 17.0
5.05.0 9.0 5.0 5.09.05.05.05.0 9.0

5.0 5.09.05.05.0 5.0 5.05.0 5.05.0
9.0 5.05.0 9.0 5.0 5.0 5.09.0 5.0 9.0

1.05.09.0 1.05.0 9.013.0 5.013.0 1.0
1.09.0 1.0 1.09.0 1.01.0 1.0 5.09.0

5.05.05.09.0 13.0 9.05.09.0 5.09.0
5.0 1.05.0 1.05.0 5.0 5.09.09.0 5.0

5.05.0 5.013.05.09.017.0 1.0 1.09.0
1.0 1.01.09.013.05.0 5.01.01.01.0

5.0 17.0 5.09.017.0 17.0 5.017.0 5.0 17.0

Figure 3.5: Performance analysis of simulated annealing

Fig. 3.5. Fig. 3.4 provides us a 3D view, to help visualise the system usage. It must

be noted that these plots contain only those points which have converged. From the

plots, we can infer the following:

• A max-step size of 5-9 converges in most of the cases.

• For a damping constant greater than 1.1 performance deteriorates.

• ‘Iterations per temperature’ must be varied proportional to the number of

nodes, for better performance.

We can observe that this technique out performs simplex algorithm.

29

3.3.4 Performance analysis of Iterative Majorization

There are no configuration variables in Iterative Majorization. Implementation de-

tails have been explained in Section 3.2.3.

Fig. 3.6 shows the performance of IM against varying number of nodes. It has

been noted in many a literature, that at times, IM might fail by converging to a local

minimum[42]. However in our study we found that, out of 666 trials, 662 test cases

converged within 100 iterations. 3 test cases took 100-200 iterations to converge.

There was only one test case, which could only converge to a loss 0.101 (which is

fairly accurate), even after 1000 iterations. Hence in this work we are ruling out the

cases where IM might fail to converge.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 20 40 60 80 100 120 140 160 180 200

T
im

e
ta
ke
n

No. of nodes

Converged points

Figure 3.6: Performance analysis of iterative majorization

30

3.3.5 Comparison

Fig. 3.7 compares the best case solutions (system usage using the configuration vari-

ables that give the best and fastest solution for a given number of nodes) for simplex

algorithm and simulated annealing. However all solutions of iterative majorization

are shown in the plot. We can see that iterative majorization is the clear winner

compared to the other two MDS techniques. Hence iterative majorization has been

chosen for implementing localization in TinyOS in this work.

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200

T
im

e
ta
ke
n
(i
n
s)

No. of nodes

Comparison of time taken for each technique

Iterative majorization
Best cases of simulated annealing
Best cases of simplex algorithm

Figure 3.7: Comparison of MDS techniques

Simplex algorithm and simulated annealing were simulated only up to 100 nodes,

as the simulation times have increased to a few seconds on computer. The time

required to carry a computation of similar order on motes would be inordinate.

However the time required for iterative majorization had remained low. Hence

simulations have been carried out up to 200 nodes, which can be safely assumed to

be the upper limit of number of connectible nodes.

Fig. 3.8 shows us the rate of convergence of each of the techniques on a particular

test case involving 44 nodes. Note that the x-axis is logscale. We can see the speed

with which each algorithm minimises the loss function.

31

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10 100 1000 10000

Lo
ss

No. of Iterations

Simulated annealing
Iterative majorization

Simplex algorithm

Figure 3.8: Comparison of speed of convergence of MDS techniques for a test case
of 44 nodes

Chapter 4

Implementation in motes

In this work, TinyOS has been used to develop and test applications for Wireless

Sensor Networks. We have seen that MDS techniques translate the set of inter-nodal

distances to corresponding coordinates of the nodes. The following section explores

the study of inter-nodal distances in commercial motes.

4.1 Obtaining inter-nodal distances

The distance between a pair of nodes is estimated using certain metrics we have

seen in Section 3.1.1. In this work we have studied RSSI, ToA, LQI and ED to

understand their variations with distance. Previous research using these metrics

have been mostly done on test-bed platforms [1] which have better accuracy and

time resolution. Their results help us understand the theoretical significance of

these metrics. But they fail to provide us with an idea of performance of the metrics

in commercially viable motes, which are in popular use. Hence we have studied

metrics and their relation with distances.

4.1.1 Experimental setup

Our experimental setup consists of IRIS motes [55], which have RF230 radio

transceiver [56]. These transceivers provide the following metrics after the receipt

32

33

of a radio message:

RSSI RSSI register is updated every 2 µs as long as it is receiving a message.

Energy Detection (ED) ED is another metric that reflects the energy in received

signal. It is computed by averaging the RSSI metric, over 8 IEEE 802.15.4

symbols (128 µs). The relation between signal strength and ED of IRIS motes,

as provided by the datsheet, is

ED
84

+
signal_strength− 7

−91
= 1 (4.1)

Link Quality Indication (LQI) LQI determines the link quality of the radio link.

LQI values are integers from 0 to 255 and can be associated with packet error

rate (PER).

ToA ToA reflects the time taken for a message to travel between two motes. This

metric is not directly provided by the hardware. Techniques involving usage

of the message timestamps have to be used for find ToA.

To obtain ToA metric between motes m1 and m2, clocks on both the motes should

be synchronised. Synchronisation of clocks itself is a much researched topic, as it is

used in many other scenarios e.g., MAC and routing protocols.

m1 m2
t1 t

′
1

t2t
′
2

Figure 4.1: Finding ToA without synchronised clocks

In our experiments the following method is used which doesn’t require synchro-

nised clocks. Consider Fig. 4.1.

• Transmit a message from m1. record the time of transmission t1 (according to

clock of m1).

34

• On receipt of message on m2, record the time t′1 (according to clock of m2).

• Without much processing delays transmit back message from m2 to m1, record

time t2 (according to clock of m2).

• On receipt of message on m1, record the time t′2 (according to clock of m1).

• ToA is now given by (t1−t
′
2)−(t

′
1−t2)

2
.

Considering the speed of propagation of a radio signal, the following is the chart

of minimum possible resolution of distances computed from ToA corresponding to

clock resolutions.

Clock frequency Minimum distance resolution

1 KHz 299.79 km

1 MHz 299.79 m

4 MHz 74.948 m

8 MHz 37.47 m

16 MHz 18.73 m

IRIS motes work at 8MHz, and henceforth only resolutions greater than 37.47m

are possible. However in reference [54] high frequency equipment, whose clocks had

resolution of nano seconds, have been used and henceforth resolution in the range

of a few meters had been possible.

To measure these metrics and study their variation with distance, we have varied

distance between two motes, in steps, from 0m to 50m. At each different distance, a

code is run which acquires the metrics and stores them in the flash memory. These

readings were later transferred to the computer with the help of Base Station mote.

While acquiring the metrics, both the motes have been placed at a height of 1m

from the ground.

35

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40 45 50

To
A

Distance in m

Figure 4.2: ToA vs. distance in open space

170

180

190

200

210

220

230

240

250

260

0 5 10 15 20 25 30 35 40 45 50

LQ
I

Distance in m

Figure 4.3: LQI vs. distance in open space

Fig. 4.2 shows the variation of ToA with distance. As expected, we are unable

to infer any information from ToA, because of the clock resolution of motes.

Fig. 4.3 shows the variation of LQI with distance. LQI is computed from packet

error rate (PER). We find that LQI doesn’t vary with distance, in a clear line of

sight test. Hence it is an insufficient metric to estimate inter-nodal distance..

36

0
5
10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45 50

E
ne
rg
y
D
et
ec
ti
on

Distance in m

ED vs. distance

Figure 4.4: ED vs. distance in open space

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

E
ne
rg
y
D
et
ec
ti
on

Distance in m

ED vs. distance

Figure 4.5: ED vs. distance over the corridor roof

Fig. 4.4 and Fig. 4.5 show the variation of ED in an open space and over a

corridor, connecting Lecture Hall Complex and Faculty Building at IIT Kanpur.

In both the experiments, clear line of sight between motes has been maintained.

Corridor had adjacent trees, but the readings show no significant effects of adjacent

objects.

37

4.1.2 RSSI readings

Out of the available metrics on IRIS motes, RSSI follow a pattern. Hence ED

(average of RSSI) is the best metric to estimate inter-nodal distances. However we

find that signal strength doesn’t vary as predicted by 3.8. The following section

provides us with a model to understand the ED variations in Fig. 4.4 and Fig. 4.5.

Ground-bounce path loss

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40 45 50

E
ne
rg
y
D
et
ec
ti
on

Distance in m

ED vs. distance

set 1
set 2
set 3

Figure 4.6: ED vs. distance in open space for 3 different sets showing the ground
bounce effect

Fig. 4.6 shows three different readings sets, taken at completely different loca-

tions. These plots show us a path-loss that is different from simple log-distance

model of equation 3.8. The undulations seen are not environmental noise. They

have taken the same pattern in all the acquired sets of readings. These undulations

are caused because of interference between the line-of-sight radio wave, and the radio

wave reflected by the ground.

The antennae used in IRIS motes, are omnidirectional. So a signal of almost equal

intensity reflects at the earth surface, and reaches the receiver. A model to find the

38

m1 m2

d

h1 h2

Figure 4.7: Illustration of ground-bounce between two motes

resultant signal intensity after the interference with reflected signal is provided in

[57]. The following equation 4.2 models the path loss after ground-bounce where

two motes are placed at heights h1 and h2 as shown in Fig. 4.7:

4d ≈ 2h2h1/d

Pd ∝
(

λ
4πd2

)2
sin2

(
π4d
λ

) (4.2)

In our experiment both h1, h2 are set to 1m. λ for the radio channel of 2.4GHz

is 12.49cm.

-100
-90
-80
-70
-60
-50

5 10 15 20 25 30 35 40 45 50

P
d
B
in

-d
B
m

Distance in m

-30

-25

-20

-15

-10

5 10 15 20 25 30 35 40 45 50

P
d
B
in

-d
B
m

Distance in m

Experimental RSSI data

log
((

λ
4πd2

)2
sin2

(
π4d
λ

))

Figure 4.8: Verifying ground-bounce path loss model

Fig. 4.8 verifies the ground bounce path-loss model, which is commonly ignored

in discussions of WSN localizations. Most of the simulations of WSNs use direct

39

line-of-sight free space path-loss as input to the simulations.

Estimating distance from ED

The mote can receive only integral values of ED varying from 0 to 84. In practice

the value of ED never crossed ≈ 54, for mote to mote communication.

To estimate the inter-nodal distance from the ED value found after the receipt

of a message from a mote, we have created a table of ED vs. distance. The mote

looks up the table and finds the distance corresponding to a given ED. To enumerate

the table we have fitted the experimentally found ED vs. distance data onto the

following fifth order monotonically decreasing function:

ED = −
(
1.3× 10−6

)
d5 + 0.00021 d4 − 0.013 d3 + 0.37 d2 − 5.1 d+ 40 (4.3)

5
10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45 50

P
d
B
in

dB
m

Distance in m

Experimental ED values

Equation 4.3

Points from distance table

Figure 4.9: Points of distance table for estimation of distance from ED

The 5th order equation 4.3 and the reconstruction table are plotted in Fig. 4.9.

The error in estimating distances on using this model are shown in Fig. 4.10. This

error is inevitable, because ED vs. distance is non monotonic. There are more than

one possible distances for a given ED. Observe in Fig. 4.9 that a section from 12m to

18m, has estimation errors as high as 25m. Such large errors could be catastrophic

for localization techniques. In this work we provide no solution for correcting this

error. But we speculate that if the nodes are mobile, Kalman filtering could decrease

40

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

E
st
im

at
ed

di
st
an

ce
in

m

Distance in m

Figure 4.10: Errors in estimating distance from ED using distance table

the errors.

4.2 Asynchronous neighbour discovery

The first step of localization of a given network of nodes is to identify the neighbour-

ing nodes. Since this is the first step after the motes are turned on, we assume no

particular protocol of the nodes. We use a bare-bones version of neighbour discovery,

primarily based on random amount of back-off.

Detection of the neighbours is done by each mote broadcasting its presence.

Since this is the first step of communication after setting up the network, there is

no particular order in which motes should take turns to broadcast their presence.

In this version we assume that the entire network is connectible. This is required

as the IM can’t deal with holes in the D matrix. A group leader is chosen for the

entire network, which will do the main processing of localization.

The steps involved in choosing the group leader and discovering the neighbours

are as follows:

1. Each mote sets a timer that fires off after a random interval. (say 0-16ms)

41

2. On firing off of the timer a discovery packet is broadcast by the mote.

3. On receipt of every discovery packet, the timer if hasn’t fired yet, is restarted

and set to a different random value. Also the node_id, address, and the ED

values are stored in a table.

4. The mote in which the timer fires off first, becomes the group leader.

5. If there are no more discovery packets in the medium, for a TIMEOUT, say for

a 120ms period, the neighbourhood discovery is considered complete.

4.3 Iterative majorization

A small library that provides some of the functionality of GSL was created. This

enabled usage of the library code mentioned in Section 3.3, which was built using

GSL.

After the completion of neighbourhood discovery, the group leader will enter the

state of syndication. In this state, it will query and collect the neighbourhood

information (node_id and ED values) from each mote present in its neighbourhood

table.

Once the syndication is complete, the group leader allocates the necessary

memory to carry out IM. The ED values are translated to distance estimates and

stored in a matrix D. A task im_iterate() is posted which runs one iteration of

the IM technique. At the end of the task, it posts itself recursively, until im_test()

returns True.

Function im_test() is satisfied, if the difference in losses of the map X before

and after iteration is lesser than a threshold.

Fig. 4.11 shows us a flow chart of the implementation of iterative majorization.

It must be noted that, in this algorithm the amount of memory required at the

group leader mote is O(n2).

42

Start: set initial ~X [0] = [Random]n×2;
k = 1

k += 1;

Update ~X [k] =
(
n−1 ×B(~X [k−1])× ~X [k−1]

)

Compute σ[k]
n

If σn <
threshold

?

Finish

No

Yes

Figure 4.11: Flow chart of iterative majorization

4.4 Testing

All the code for iterative majorization has been written in nesC. Most of the code

has been written using tasks which run for a small duration, so as to let the motes

be responsive for sensor data aggregation and other processing tasks. We tested the

code, by arranging 4 motes in easily recognisable patterns like ‘L’, square, triangle

etc., and obtained satisfactory results. We had a physical limitation of 5 motes,

in order to test the code of IM. For robust testing of the algorithm we had to

test it on ≈ 10 motes. Hence we have used the TOSSIM (TOS simulator)[58] to

see the performance and verify the working of the code. TOSSIM is the TinyOS

43

simulator. It simulates entire TinyOS applications. It works by replacing a few of

the components with simulation implementations. It is built to seamlessly simulate

1000s of nodes simultaneously.

To run a simulation, TOSSIM requires a helper code that steps through the

simulation, monitors variables and injects packets into the system. The helper code

has to initialise the motes that are to be simulated and add the radio links between

the motes. TOSSIM also accepts the signal strength and a noise model for each of

the links. The helper code can be programmed in either C++ or Python. Python

has been chosen in this work.

We have developed a Python helper code, which accepts a set of coordinates

corresponding to the nodes that are to be simulated. A radio link is established

between every two motes which are within a range of 50m. IRIS motes have a

range of ≈ 100m, but since the experimental measurements were limited to 50m,

we are using 50m as the limit of radio connection. In practise one can decrease the

transmit power of the motes so that the maximum range of the motes is limited

to 50m. While establishing the radio links, the signal strength between a pair of

motes, d distance apart, is set to the value obtained from the experiment for d.

In the readings we obtained, for clear line of sight (Fig. 4.8), the noise was little

compared to the deviations caused in path-loss due to ground-bounce effect. Hence

no noise was added to the radio links.

The simulation computes a matrix ∆ of inter-nodal distances.

∆ =

0 δ2
12 . . . δ2

1n

δ2
21 0 . . . δ2

2n

...
...

δ2
n1 δ2

n2 . . . 0

These distance are converted to a matrix of signal strengths of radio links and

fed into the simulator. After the neighbour discover, the group leader estimate a

matrix ∆̂ from the signal strengths.

44

∆̂ =

0 δ̂2
12 . . . δ̂2

1n

δ̂2
21 0 . . . δ̂2

2n

...
...

δ̂2
n1 δ̂2

n2 . . . 0

The relation between D̂ and D have been shown in Fig. 4.10.

The results of a few test cases are show in Fig. 4.12, along with the final loss to

which they converged. It must be noted that a mote is aware only of ∆̂, because

of which the loss reported by mote is σn(~X, ∆̂) (equation 4.4). However σ(~X,∆)

shows us how close to the original coordinates the results have approached. Hence

both the losses (σ(~X, ∆̂) as σ̂, σ(~X,∆) as σ) are reported.

σ(~X,∆)
def
=

∑
i<j e

2
ij =

∑
i<j

(
dij(~X)− δij

)2∑
i<j δ

2
ij

(4.4)

Fig. 4.13 shows the simulation results for the test cases which were used in Fig. 4.12,

but using ideal distances. Wsn-like distances, which model the effect of ground-

bounce path loss, significantly reduced the accuracy. To attain better results, it

is necessary to research measures which can counter the effects of known and pre-

dictable phenomenon like ground-bounce.

45

No. of points, σn(~X,∆), σn(~X, ∆̂) mentioned at the top of each image. Both axes
of all the plots are distance in m. The plots show vectors from actual coordinates

to estimated coordinates obtained by the MDS technique.

-30

-25

-20

-15

-10

-5

0

-35 -30 -25 -20 -15 -10 -5

19 points, 0.171, 0.195

1
2 3
4

5

6
7

8 9 10
1112

13
14
15
16

17
1819

-25
-20
-15
-10
-5
0
5
10
15

-30 -25 -20 -15 -10 -5 0 5

12 points, 0.056, 0.093

12

3
4

5 6
78

9
1011

12

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15

6 points, 0.003, 0.034

1

2 3

4 5 6 -15

-10

-5

0

5

10

15

-8 -6 -4 -2 0 2 4 6 8 10 12

14 points, 0.135, 0.279

1
2

3

4 5
67
8

9
10

11 12
13
14

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15

16 points, 0.162, 0.172

1

2

3

4 5

6

7

8 9

10

11

12 13

14

15

16

Figure 4.12: Results of a few test cases on simulation with IM using wsn-like dis-
tances

46

No. of points, σn(~X,∆), σn(~X, ∆̂) mentioned at the top of each image. Both axes
of all the plots are distance in m. The plots show vectors from actual coordinates
to estimated coordinates obtained by the MDS technique. Note that most of the
vectors are hidden under the coordinate labels, as the results found are accurate.

-30

-25

-20

-15

-10

-5

0

-30 -25 -20 -15 -10 -5

19 points, 0.0003, 0.0010

1
2 3
4

5

6
7

8 9 10
11 12

13
14
15
16

17
1819

-25
-20
-15
-10
-5
0
5
10
15

-25 -20 -15 -10 -5 0 5

12 points, 0.0002, 0.0005

12

3
4

5 6
78

9
1011

12

-10

-5

0

5

10

15

20

25

-15 -10 -5 0 5 10 15

6 points, 0.0014, 0.0015

1

2 3

4 5 6 -15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

14 points, 0.0048, 0.0050

1
2

3

4 5
67
8

9
10
1112

13
14

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10

16 points, 0.0003, 0.0007

1

2

3

4 5

6

7

8 9

10

11

12 13

14

15

16

Figure 4.13: Results of a few test cases on simulation with IM using ideal distances

47

The loss at the end of each iteration for a test case of 9 motes using TOSSIM is

shown in Fig. 4.14. We have observed that wsn-like distances take longer than ideal

distances to converge. Wsn-like distances are different from ideal distances in the

sense that, these distances do not absolutely satisfy as the distance matrix of any

coordinate system. This is due to the errors in range estimation. However the ideal

distances used can be fitted into a coordinate system, with a small error.

0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3
0.32

0 10 20 30 40 50 60 70 80

Lo
ss
σ
n

Iterations

Using wsn-like distances

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

Lo
ss
σ
n

Iterations

Using ideal distances

Figure 4.14: Loss after each iteration for a test case of 9 motes

Chapter 5

Distributed localization

The majorization technique implemented in the previous chapter suffers from a few

drawbacks. Given a network of motes to localise, each mote should be connectible to

every other mote in the network. It is difficult to establish this condition. Consider

the case where numerous, say 200, nodes are placed in a small area such that every

two nodes are connectible. The previous technique will require 4K bytes of memory

to store the D matrix. The memory requirement is O(n2), which will soon exhaust

the memory on embedded systems.

One workaround is to split the network into small connectible regions. These

small localised regions can be stitched together to a final global map. To stitch two

maps, the maps must be overlapping with a minimum of 3 common nodes (present

in both maps). One has to find the relative shift, rotation and flip(reflection) of

both the maps with the help of the common nodes and adjust the local maps. This

is true only when the normalised stress of the maps is low. The number of common

nodes required in the case of noisy readings will be significantly greater than 3. The

degree of overlapping, for correct stitching, is dependent on the accuracy of locating

the nodes.

Consider a map Xn×2 which is to be localised from a given distance matrix D.

We have seen that each iteration of IM involves improving the estimate X to Xu.

Consider (xi, yi), the coordinates of ith node. We simplified equation 3.7 and the

48

49

corresponding coordinates of Xu are

(xui , y
u
i) =

∑j 6=i

(
− xj dijd̂ij

)
+ xi

∑
j 6=i

(
dij

d̂ij

)
n

,

∑
j 6=i

(
− yj dijd̂ij

)
+ yi

∑
j 6=i

(
dij

d̂ij

)
n

(5.1)

Equation 5.1 can be reorganised to

(xui , y
u
i) =

(
xi
n

(
1 +

∑
j 6=i

(
dij

d̂ij

))
, yi
n

(
1 +

∑
j 6=i

(
dij

d̂ij

)))
−
(P

j 6=i

(
xj

dij

d̂ij

)
+xi

n
,

P
j 6=i

(
yj
dij

d̂ij

)
+yi

n

) (5.2)

The second term of equation 5.1, pulls the centroid of the map to the origin.

This can be easily visualised by considering the case in which matrix D is generated

by taking inter-point distance of map X. In this case estimated distance D̂ and

computed distance D are the same. Thus we have dij/d̂ij = 1. Substituting this

equation 5.2 reduces to

(xui , y
u
i) = (xi, yi)−

(∑
j xj

n
,

∑
j yj

n

)
(5.3)

We see from equation 5.3 that, the iterations will change the map, for as long as(P
j xj

n
,

P
j yj

n

)
6= 0 (i.e., centroid of map not at origin).

This could be problematic for distributed localization as one has to use separate

coordinate systems for each region. To avoid using separate coordinate systems, we

have modified the equation 5.1 by adding a third compensating term, so as to stop

the equation from moving the centroid of map to the origin. The modified equation

is
(xui , y

u
i) =

(
xi
n

(
1 +

∑
j 6=i

(
dij

d̂ij

))
, yi
n

(
1 +

∑
j 6=i

(
dij

d̂ij

)))
−
(P

j 6=i

(
xj

dij

d̂ij

)
+xi

n
,

P
j 6=i

(
yj
dij

d̂ij

)
+yi

n

)
+
(P

j xj

n
,

P
j yj

n

) (5.4)

which can be rearranged to

50

(xui , y
u
i) =

P
j 6=i

(
xj(1−

dij

d̂ij
)

)
+xi

(
1−

P
j 6=i (1−

dij

d̂ij
)
)

n
,

P
j 6=i

(
yj(1−

dij

d̂ij
)

)
+yi

(
1−

P
j 6=i (1−

dij

d̂ij
)
)

n

 (5.5)

The new distributed algorithm scheme is using equation 5.5. Initially each node

assumes a random coordinate. Each node, computes its new position using equation

5.5 and announces the new coordinate to its neighbours. Each neighbour updates

their local distance table on receiving the announcement. This process is repeated

until there are no more significant updates in the coordinates. Perfect synchroni-

sation of collection of data from all the nodes will require a tedious protocol. The

scheme we propose is:

• At a fixed regular interval, T1, each node computes its new location using

equation 5.5 with data from its distance table (Maintained by each mote).

• The above computed coordinate is broadcasted in the medium, after a random

back-off period(which must be lesser than T1) .The back-off is introduced as

a preemptive measure, to avoid collisions. n used in equation 5.5 is set to

the number of entries in the distance table, rather than number of nodes in

network.

• Each node within range registers this new coordinate and updates the dis-

tance table, provided that no collision of packets has occurred. These new

coordinates are used in the next iteration for the computation of coordinates.

• This process is repeated for as long as computation provides new coordinates

different from the old ones.

This computation is done by every node in the network. We can now relax the

criteria of all nodes being connectible, as we are no more using the D matrix (which

required the network to be connectible) in the computation of coordinates. This

scheme can be visualised as each node computing its coordinates using data in a

51

particular sub-region. The network has as many sub-regions as the nodes which

vary smoothly. Sub-regions of two adjacent nodes, have very few different nodes.

Hence the stitching work is done implicitly by the equation 5.5.

Fig. 5.2 shows the scheme of final algorithm implemented, for distributed local-

ization. Fig. 5.1 defines the blocks used in the final algorithm.

x’ = 0;
y’ = 0;

factor = 0;
size = 0;

backoff_timer.start(
Random.rand() % T2);

compute_timer.start(T1);
/* T2 < T1 */

Initialise iteration
msg {

x;
y;

};

msg.x = x;
msg.y = y;

broadcast(msg);

‘Back-off’ timer fired

δ = estimated distance from
received message’s ED

d = distance between (x, y)
and (msg.x, msg.y)

x’ += (1 - d
δ
) * (msg.x);

y’ += (1 - d
δ
) * (msg.y);

factor += (1 - d
δ
);

size += 1;

On receipt of msg
factor /= size;

x’ = (x’/size +
(1 - factor) * x);

y’ = (y’/size +
(1 - factor) * y);

/* (x’,y’) ⇐ new coordinates */

‘Compute’ timer fired

swap (x, y) with (x’, y’)
if (|x - x’| < threshold) and

(|y - y’| < threshold) {
return TRUE;
IM finished;

} else {
return FALSE;
/* call “initialise

iteration” */
}

test convergence

Figure 5.1: Blocks used in Fig. 5.2

52

start

initialise iteration

On receipt
of msg

msg from 1

Timer

‘back-off’
fired

broadcast msg

On receipt
of msg

msg from 3

On receipt
of msg

msg from 5

On receipt
of msg

msg from 4

‘Compute’
timer fired

Test
converged

?

Finish

Yes

No

Figure 5.2: Flow chart of distributed iterative majorization. Details of blocks used
are provided in Fig. 5.1

53

No. of points, σn(~X,∆), iterations consumed mentioned at the top of each image.
Both axes of all the plots are distance in m. The plots show vectors from actual
coordinate to estimated coordinate obtained by the MDS technique. Note that

most of the vectors in plots of experiments using ideal distances are hidden under
the coordinate labels, as the results found are accurate.

Wsn-like distances Ideal distances

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

4 points, 0.082, 19

1 2

3
4

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

4 points, 0.0005, 17

1 2

3
4

-25

-20

-15

-10

-5

0

5

-30 -28 -26 -24 -22 -20 -18 -16

6 points, 0.125, 12

1
2

3

4 5

6
-25

-20

-15

-10

-5

0

5

-30 -28 -26 -24 -22 -20 -18 -16 -14

6 points, 0.0012, 28

1
2

3

4 5

6

-35

-30

-25

-20

-15

-10

-5

0

-35 -30 -25 -20 -15 -10 -5

19 points, 0.165, 502

1
2 3
4

5

6
7

8 9 10
1112

13
14
15
16

17
1819

-30

-25

-20

-15

-10

-5

0

-30 -25 -20 -15 -10 -5

19 points, 0.0011, 47

1
2 3
4

5

6
7

8 9 10
11 12

13
14
15
16

17
1819

Figure 5.3: Results of a few test-cases on simulation with IM using ideal distances

54

Wsn-like distances Ideal distances

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

21 points, 0.050, 875

12 3

4
5

6

7
8

9

10
11

12

13 14
15

16 1718

19 2021

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

21 points, 0.0029, 229

12 3

4
5

6

7
8

9

10
11

12

13 14
15

16 1718

19 2021

(a)

-30

-20

-10

0

10

20

30

-30-25-20-15-10-5 0 5 10 15 20

13 points, 0.168, 259

1
2
3 4

56
7

8 9

1011
12
1314

-30

-20

-10

0

10

20

30

-30-25-20-15-10-5 0 5 10 15 20

13 points, 0.0007, 66

1
2
3 4

56
7

8 9

1011
12
1314

(b)

0
10
20
30
40
50
60
70
80
90

-80-70-60-50-40-30-20-10 0 10 20

43 points, -, -

1
2

3

4

5

6 7
8

9
10

11

12 13

14

15

16

17

18 19
20
21
22

23

24

25 26

27

28

29

30

31 32

33

34

35

36

37 38

39

40

41

42

43

0
10
20
30
40
50
60
70
80
90

-80-70-60-50-40-30-20-10 0 10 20

43 points, 0.0220, 314

1
2

3

4

5

6 7
8

9
10

11

12 13

14

15

16

17

18 19
20
21
22

23

24

25 26

27

28

29

30

31 32

33

34

35

36

37 38

39

40

41

42

43

(c)

Figure 5.4: Continued from 5.3

55

Fig. 5.3 and Fig. 5.4 show the input and output of a few test cases and also

the iterations required and final loss. test cases, have been simulated with ideal

distances and wsn-like distances. Note that the communication range is set to 50m.

Test cases in Fig. 5.4 have nodes with more than 50m inter-nodal distance. Hence

these maps are not completely connectible. We can observe that test cases have

achieved a good accuracy using ideal distances. These same test cases, using wsn-

like distances, achieved a decent accuracy in Fig. 5.3 where the maps are completely

connectible. But wsn-like distances deteriorated performance in the Fig. 5.4 where

nodes are not completely connectible. In fact in test case (c), which had very low

degree of connectivity, had worst results, and showed absolutely no convergence of

the loss computed.

This algorithm uses O(1) memory on each node. The memory (both code and

variables) required on each mote will be a few 100 bytes. Hence we consider this

algorithm efficient in terms of memory usage.

However as the degree of connectivity decreased, the time/iterations required for

the localization to converge increased. We speculate that the speed can be increased,

if we initialise the network, with approximate coordinates rather than random values.

These approximate coordinates can be found using range free techniques. Alterna-

tively one can localise locally in rigid sub regions and explicitly stitch the maps to

generate a global map.

Chapter 6

Conclusions and suggestions for

further work

The main aim of the present work was to study different MDS techniques and provide

a solution for in-network localization. Simplex algorithm, simulated annealing and

iterative majorization were implemented and simulated using wsn-like distances.

The results show that iterative majorization outperforms the other two techniques.

From the speed of convergence, it can be safely assumed that iterative majorization

is one of the fastest among the available techniques.

IRIS motes were chosen for implementing and testing localization. Various met-

rics available at the time of radio communication have been compared. RSSI was the

only metric that provided useful information for range estimation. We observed sig-

nificant ground-bounce effect in the signal attenuation pattern. This is a fact that is

largely unnoticed in WSN literature for localization. Localization was implemented

and tested using TinyOS and TOSSIM. Ground-bounce significantly decreased the

localization accuracy.

The initial version of localization using iterative majorization, had a few prob-

lems. It required that all nodes in network should be connectible and was aggressive

in memory usage. A slightly modified version of iterative majorization was devised

which addressed connectibility and memory issues. This version used distributed

56

57

computation. The condition of completely connectible network has been relaxed.

Memory usage was reduced from O(n2) on one mote to O(1) on n motes. How-

ever the time required to solve large maps of low connectivity will be significantly

large. This method proved disastrous using wsn-like distances when the connectivity

among nodes is low.

6.1 Suggestions for further work

In our work, we haven’t studied in detail the effect of degree of connectivity on the

performance of distributed algorithm. Such a study could provide insights on the

robustness of the algorithm. We have seen errors in localization that are introduced

by ground bounce effect of path loss. Research can be done to provide range esti-

mation techniques that compensate for known distortions of path loss. In the case

of mobile nodes, Kalman filtering can decrease these errors to some extent.

Good accuracy is tough to provide using in-network localization due to physical

limitations. Hence the other important direction of work is to improve techniques

so as to provide the confidence level of a given result for each particular node. This

information can be helpful in many scenarios.

We have seen that iterative majorization is computationally simple and efficient

compared to most other localization techniques. In our work we visualise the net-

work in 2 dimensions, based on their signal strengths. It is possible that a higher

dimensional analysis, can provide valuable information that can be further used by

routing techniques in finding energy efficient paths for transport of packets.

References

[1] N. Patwari, “Wireless sensor network localization measurement repository.”

http://www.eecs.umich.edu/ hero/localize.

[2] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-

munication protocol for wireless microsensor networks,” in Proceedings of the

33rd Annual Hawaii International Conference on System Sciences, p. 10, 2000.

[3] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie, “Protocols for self-organization

of a wireless sensor network,” IEEE Personal Communications, vol. 7, no. 5,

pp. 16–27, 2000.

[4] D. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-neigh protocol for

symmetric topology control in ad hoc networks,” in Proceedings of the 4th ACM

international symposium on Mobile ad hoc networking & computing, p. 152,

ACM, 2003.

[5] M. Kochhal, L. Schwiebert, and S. Gupta, “Role-based hierarchical self orga-

nization for wireless ad hoc sensor networks,” in Proceedings of the 2nd ACM

international conference on Wireless sensor networks and applications, p. 107,

ACM, 2003.

[6] A. Amis and R. Prakash, “Load-balancing clusters in wireless ad hoc networks,”

in Proceedings of 3rd IEEE Symposium on Application-Specific Systems and

Software Engineering Technology, pp. 25–32, 2000.

58

59

[7] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, and C. MIT, “An

application-specific protocol architecture for wireless microsensor networks,”

IEEE Transactions on wireless communications, vol. 1, no. 4, pp. 660–670,

2002.

[8] L. Subramanian and R. Katz, “An architecture for building self-configurable

systems,” in First Annual Workshop on Mobile and Ad Hoc Networking and

Computing, pp. 63–73, 2000.

[9] M. Ad, E. Royer, C. Perkins, and S. Das, “Ad hoc on-demand distance vector

(AODV) routing,” Internet Draft, 2000.

[10] S. Madden, M. Franklin, J. Hellerstein, and W. Hong,

“Tag: a tiny aggregation service for ad-hoc sensor networks.”

http://www.usenix.org/events/osdi02/tech/full_papers/madden/madden_html/paperhtml.html.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable

and robust communication paradigm for sensor networks,” in Proceedings of the

6th annual international conference on bile computing and networking, pp. 56–

67, ACM, 2000.

[12] H. Karl and A. Willig, Protocols and architectures for wireless sensor networks.

Wiley-Interscience, 2007.

[13] P. IEEE802, “15.4: Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks

(LR-WPANs),” LAN/MAN Standards Committee of the IEEE Computer Soci-

ety, 2003.

[14] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered sensor

networks,” in Proceedings of the 4th international symposium on Information

processing in sensor networks, 2005.

60

[15] A. Tanenbaum and A. Woodhull, Operating systems: design and implementa-

tion. Prentice Hall India, 1997.

[16] “TinyOS.” http://www.tinyos.net/.

[17] D. Gay, P. Levis, R. Von Behren, M.Welsh, E. Brewer, and D. Culler, “The nesC

language: A holistic approach to networked embedded systems,” in Proceedings

of the ACM SIGPLAN 2003 conference on Programming language design and

implementation, p. 11, ACM, 2003.

[18] S. Li, R. Sutton, and J. Rabaey, “Low power operating system for heterogeneous

wireless communication systems,” in Compilers and operating systems for low

power, pp. 1–16, Kluwer Academic Publishers, 2003.

[19] “ecos.” http://ecos.sourceware.org/.

[20] H. Vlado, D. Gay, et al., “Hardware abstraction architecture in TinyOS.”

http://www.tinyos.net/tinyos-2.1.0/doc/html/tep2.html.

[21] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world

with wireless sensor networks,” in IEEE International Conference on Acoustics

Speech and Signal Processing, vol. 4, Citeseer, 2001.

[22] G. Pottie and W. Kaiser, “Wireless integrated network sensors,” Communica-

tions of the ACM, vol. 43, no. 5, pp. 51–58, 2000.

[23] N. Srour, “Unattended ground sensors a prospective for operational needs and

requirements,” ARL Report Prepared for NATO, 1999.

[24] S. Kumar, F. Zhao, and D. Shepherd, “Collaborative signal and information

processing in microsensor networks,” IEEE Signal Processing Magazine, vol. 19,

no. 2, pp. 13–14, 2002.

[25] S. Madden, M. Franklin, J. Hellerstein, andW. Hong, “TinyDB: an acquisitional

query processing system for sensor networks,” ACM Transactions on Database

Systems (TODS), vol. 30, no. 1, p. 173, 2005.

61

[26] S. Oh and S. Sastry, “Tracking on a graph,” in Information Processing in Sensor

Networks, 2005. IPSN 2005. Fourth International Symposium on, pp. 195–202,

2005.

[27] P. Sridhar, A. Madni, and M. Jamshidi, “Intelligent Object-Tracking using

Sensor Networks,” in IEEE Sensors Applications Symposium, 2007. SAS’07,

pp. 1–5, 2007.

[28] X. Hong, K. Xu, M. Gerla, and C. Los Angeles, “Scalable routing protocols for

mobile ad hoc networks,” IEEE network, vol. 16, no. 4, pp. 11–21, 2002.

[29] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for wireless

networks,” in Proceedings of the 6th annual international conference on Mobile

computing and networking, pp. 243–254, ACM, 2000.

[30] J. Xu, X. Tang, and W. Lee, “A new storage scheme for approximate location

queries in object-tracking sensor networks,” IEEE transactions on parallel and

distributed systems, vol. 19, no. 2, pp. 262–275, 2008.

[31] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker,

“GHT: a geographic hash table for data-centric storage,” in Proceedings of the

1st ACM international workshop on Wireless sensor networks and applications,

p. 87, ACM, 2002.

[32] S. Zhang, G. Li, W. Wei, and B. Yang, “A Novel Iterative Multilateral Local-

ization Algorithm for Wireless Sensor Networks,” Journal of Networks, vol. 5,

no. 1, p. 112, 2010.

[33] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor localiza-

tion for very small devices,” IEEE Personal Communications, vol. 7, no. 5,

pp. 28–34, 2000.

[34] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range-free lo-

calization schemes for large scale sensor networks,” in Proceedings of the 9th

62

annual international conference on Mobile computing and networking, pp. 81–

95, ACM, 2003.

[35] D. Niculescu and B. Nath, “DV based positioning in ad hoc networks,” Telecom-

munication Systems, vol. 22, no. 1, pp. 267–280, 2003.

[36] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, “Localization from mere con-

nectivity,” in Proceedings of the 4th ACM international symposium on Mobile

ad hoc networking & computing, pp. 201–212, ACM, 2003.

[37] N. Patwari, J. Ash, S. Kyperountas, A. Hero Iii, R. Moses, and N. Correal, “Lo-

cating the nodes: cooperative localization in wireless sensor networks,” IEEE

Signal processing magazine, vol. 22, no. 4, pp. 54–69, 2005.

[38] S. Roumeliotis and G. Bekey, “Synergetic localization for groups of mobile

robots,” in Proceedings of the 39th IEEE Conference on Decision and Control,

vol. 4, 2000.

[39] A. Savvides, C. Han, and M. Srivastava, “Dynamic fine-grained localization in

ad-hoc wireless sensor networks,” 2001.

[40] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, “Scalable coordination for

wireless sensor networks: self-configuring localization systems,” in Proceedings

of the 6th International Symposiumon Communication Theory andApplications,

Citeseer, 2001.

[41] C. Savarese, J. Rabaey, and K. Langendoen, “Robust positioning algorithms

for distributed ad-hoc wireless sensor networks,” in USENIX technical annual

conference, vol. 2, Monterey, CA, 2002.

[42] J. Costa, N. Patwari, and A. Hero III, “Distributed weighted-multidimensional

scaling for node localization in sensor networks,” ACM Transactions on Sensor

Networks (TOSN), vol. 2, no. 1, p. 64, 2006.

63

[43] J. Costa, N. Patwari, and A. Hero III, “Achieving high-accuracy distributed

localization in sensor networks,” in Proceedings on IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, vol. 3, 2005.

[44] X. Ji and H. Zha, “Sensor positioning in wireless ad-hoc sensor networks us-

ing multidimensional scaling,” in INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, vol. 4, 2004.

[45] W. Forrest, Encyclopedia of Statistical Sciences, vol. 5. John

Wiley & Sons Inc., 1985. Relevant section available at

http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html.

[46] W. Torgerson, “Multidimensional scaling: I. Theory and method,” Psychome-

trika, vol. 17, no. 4, pp. 401–419, 1952.

[47] B. Wojciech, “Multidimensional scaling.” http://www.pavis.org/essay/multidimensional_scaling.html.

[48] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in

C. Cambridge university press Cambridge, 1992.

[49] “Gnu scientific library (gsl).” http://www.gnu.org/software/gsl.

[50] I. Borg and P. Groenen, Modern multidimensional scaling: Theory and appli-

cations, ch. 8. Springer Verlag, 1997.

[51] J. Nelder and R. Mead, “A simplex method for function minimization,” The

computer journal, vol. 7, no. 4, p. 308, 1965.

[52] R. Penrose, “A generalized inverse for matrices,” in Mathematical proceedings of

the Cambridge philosophical society, vol. 51, pp. 406–413, Cambridge University

Press, 2008.

[53] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and

F. Rossi, GNU scientific library. Citeseer, 2002.

64

[54] N. Patwari, A. Hero III, M. Perkins, N. Correal, and R. O’dea, “Relative lo-

cation estimation in wireless sensor networks,” IEEE Transactions on Signal

Processing, vol. 51, no. 8, pp. 2137–2148, 2003.

[55] C. Technology, “Iris.” http://www.xbow.com/Products/productdetails.aspx?sid=264.

[56] Atmel, “Rf230.” http://www.atmel.com/dyn/products/product_card.asp?part_id=3941.

[57] MAXIM, “Path loss in remote keyless entry systems.” http://www.maxim-

ic.com/app-notes/index.mvp/id/3945, 2006.

[58] “Tossim.” http://docs.tinyos.net/index.php/TOSSIM#Introduction.

65

Figure 1: IRIS mote

distance d

1m

Plastic frame

m1 m2

Figure 2: Experimental setup to measure the various metrics for range estimation

	Abstract
	List of Figures
	Introduction
	Objective of thesis
	Thesis organisation

	Review of Wireless Sensor Networks
	Components of a Wireless Sensor Network
	Hardware overview
	Controller
	Memory
	Communication device
	Sensors
	Power supply

	Software
	TinyOS

	Application of localization for Wireless Sensor Networks
	Related work

	Node Localization in Sensor Networks
	Basics of localization
	Methods of acquiring distances
	Methods of localization
	Multidimensional Scaling (MDS)

	Overview of algorithms studied
	Simplex algorithm
	Simulated annealing
	Iterative majorization

	Comparison of different MDS techniques
	WSN-like distances
	Performance analysis of simplex algorithm
	Performance analysis of simulated annealing
	Performance analysis of Iterative Majorization
	Comparison

	Implementation in motes
	Obtaining inter-nodal distances
	Experimental setup
	RSSI readings
	Ground-bounce path loss
	Estimating distance from ED

	Asynchronous neighbour discovery
	Iterative majorization
	Testing

	Distributed localization
	Conclusions and suggestions for further work
	Suggestions for further work

	References

